How to Reduce Production Cost of Sizing

Faisal Bin Alam¹, Fahim Hasan²

Abstract--- Sizing is an essential step for warp yarn preparation in the weaving process of textile supply chain. It is carried out to impart additional protection to warp yarns in order to withstand the abrasive forces during weaving. Although sizing is an inevitable process and offers substantial benefits during weaving, there are several problems associated with sizing. Cost is always a prime management concern and this paper approaches to explore more efficient sizing recipe in terms of selecting size chemicals compared to the traditional recipe.

Index Terms--- Cost effective, Process, Recipe, Size chemicals.

I. Introduction

Textile industry is considered as one of the largest consumers of water in the world. Processing a ton of textiles is estimated to consume about 80-100 m³ of water that is subsequently released into the environment [1-3]. Textile processes such as sizing and desizing consume considerable amounts of water, energy and chemicals and are mostly responsible for the toxic effluents released into the environment from textile plants [4-5]. Several reports have highlighted the problems and concerns on processing textiles and their effects on the environment [1]. Most countries, especially in the European Union have enacted several regulations to limit the environmental impacts of textile processing. Among the various textile processes, sizing and desizing account for 40-60% of the effluent load in a textile mill [3].

Sizing of warp yarn is a process to coat the yarns with elastic film and bind fibers of yarns so that yarns may be strong enough to resist the mechanical strain in weaving and to improve weaving efficiency. The protection to yarns imparted by coating the yarns with chemicals is called sizing. Starch and starch derivatives, carboxymethyle cellulose, and synthetic polymers such as polyvinyl alcohol (PVA) have traditionally been the most widely used sizing chemicals [5-7]. Although starch and starch derivatives are extensively used for sizing, there can be several limitations including less than satisfactory sizing performance and difficulties in desizing starch based size [8]. Relatively low price, good performance properties and easy biodegradability are the advantages of starch whereas

PVA is preferred for the excellent sizing performance and easy desizeability although PVA is more expensive than starch. However, PVA accounts for 45% of the total BOD load but does not degrade in textile effluent treatment plants and is reported to persist in water released from treatment plants [9-10]. Attempts to recover and reuse PVA and other sizing agents and limit their release into the environment have been technically challenging and economically unviable [11-12]. A significant proportion of the dyes and chemicals used for textiles which are released into effluents are reportedly hazardous to the environment [13]. In addition to the primary ingredient, sizing chemicals contain many other additives such as waxes and lubricants, softeners, emulsifiers, and finishing and wetting agents. Sizing and desizing contribute significantly to the effluents generated in a textile plant and are reported to be responsible for about 50–80 % of the chemical oxygen demand (COD) in textile waste water [14].

However, focus of this paper is limited to cost of sizing. Aim is to explore best combination of size chemicals for warp sizing from factory production data in order to reduce the cost of production, particularly by cutting chemical cost during sizing process.

Starch: Starch is the main sizing ingredient that coats the warp yarn with a film and imparts smoothness by binding the projecting fibers to the yarn surface. The viscosity of the size solution is controlled by the amount of starch, the recipe, and degree of mechanical mixing, temperature and time of boiling.

Binder: These materials penetrate into the yarn and contribute in increasing yarn strength. These materials can be used as an independent gum and substitute of starch products.

Softener: The hard-fragile film is softened by addition of softener. They increase flexibility of yarn after sizing. Tallow, Soap, Japanese wax, Modified wax, Artificial wax.

Size Chemicals Used:

- BK-1500 (Modified Starch)
- EH-Size (Modified Starch)
- CMS-60 (Modified Starch)
- B-120 (Modified Starch)
- M01 (Binder)
- M06 (Binder)

- M12 (Binder)
- Wax (Softener)

Machine Specification (Sizing part):

Brand	: Ben Size Tech
Machine Speed	: 30-40 m/min
Squeeze Pressure	:16.4 kN
No. of Squeeze Roller	: 02 pair
No. of Emersion Roller	: 02
No. of Size Dryer	: 14
Preparation Tank Temperature	: 90°C
Storage Tank Temperature	: 94°C
Size Box Temperature	: 90°C
Cooking Time	: 25-40 minute

III. Methodology

In this paper, 9 Count OE rotor 100% Cotton yarn of 3,000 meters has been used. Normal recipe chemicals such as BK-150 as starch, CMS-60 and B-120 as modified starch, M01, M06, M12 as binders and Wax as softener have been used. After the cost-reduction process, almost same chemicals with a different modified starch and bit different concentration were used. Through some changes in size chemicals, production cost reduced significantly.

At first different sizing agents according to recipe were taken manually in the mixing tank or preparation tank and water was supplied by the pipe in the mixing tank. A fan was circulated for mixing agent. Temperature was maintained in the mixing tank by steam. Then the mixed or prepared liquor was supplied to the storage tank. From this storage tank liquor is supplied the size box by pump. The concentration of the size liquor was checked by the refract meter because different concentration will have to use for different warp set. The liquor in the size box was measured with a sensor to regulate the specified level. Generally size level was maintained by passing 180mm size liquor when this level comes down to 120-130 mm then regulating valve is open pass the size liquor and maintain the level. The temperature of the size box was maintained by the steam. Simultaneously the application of the pneumatic squeeze presser with air cushion cylinder was there to regulate the squeeze presser and achieve the uniform size pickup.

IV. Results

For typical sizing of 9OE Cotton yarn, 3,000 meters of warp yarn, 675 litres of water, cost of traditional and cost effective recipe is as per following-

Traditional Recipe:

Sl.	Chemical Name	Origin	Amount	Price	Cost (\$)
No.			(Kg)	\$/kg	
1	BK-1500 (Modified Starch)	Thailand	25	0.77	19.25
2	CMS-60 (Modified Starch)	Thailand	40.25	1.95	78.49
3	B-120 (Modified Starch)	Thailand	17.25	0.68	11.73
4	M01(Binder)	France	3	4.8	14.4
5	M06(Binder)	France	0.25	4.8	1.2
6	M12 (Binder)	France	0.35	4.8	1.68
7	Wax (Softener)	Thailand	4	1.8	7.2
					Total= 133.95\$

Cost -effective Recipe:

Sl.		Chemical Name	Origin	Amount	Price	Cost (\$)
No.				(Kg)	(\$/kg)	
1	BK-	1500 (Starch)	Thailand	22	0.77	16.94
2	EH S	Size-15 (Modified Starch)	Thailand	32.5	0.63	20.47
3	B-1 2	20 (Modified Starch)	Thailand	22	0.68	14.96
4	M01	(Binder)	France	3	4.8	14.4
5	M06	(Binder)	France	0.25	4.8	1.2
6	M12	(Binder)	France	0.35	4.8	1.68
7	Wax	(Softener)	Thailand	4	1.8	7.2
						Total= 76.85\$

So, the saving amount = (133.95-76.85) \$

=57.1 \$

V. Discussion

From traditional recipe, if we replace CMS (Carboxy Methylated Starch) -60 with EH (Eiamheng)-15 Size and increase little amount of B (Bensize)-120, then it becomes cost effective almost at the same quality. Because of open end (OE) surface is smooth, so we can reduce 2-3kg starch from the recipe. As a result, size chemical can easily get inside into the yarn. CMS-60 is non toxic, harmless, non-irritant to skin. It's easy for desizing, no enzymes are required, can be removed simply by hot washing under alkaline conditions.

On the other hand, EH-15 has almost similar attributes with less hardness compared to CMS. So penetration of size chemicals is easier. Most importantly, EH -15 is much cheaper than CMS-60. In total, the saving stands for = (133.95-76.855) = 57.095\$

VI. Conclusion

In order to get better quality sized yarn, better size chemicals are required in an appropriate proportion to obtain best outcome. In this research, conventional sizing technique was examined with two different recipes on a same type of yarn, clear distinctions were identified and suggestions were made accordingly. Although starch and starch derivatives meet most of these requirements for cotton yarns, starch sizes do not provide good performance during weaving for synthetic fibers and their blends and are sometimes difficult to be desized when used on tightly woven fabrics. Further research to find better alternatives to starch, technically and commercially viable will be interesting.

Acknowledgements: We like to convey special thanks to S.M.Arifur Rahman, Assistant Manager of Production planning; Ariful Islam, shift engineer of Finishing and Ariful haque, shift engineer of Weaving for their sincere support during this experiment.

Authors Profile:

Faisal Bin Alam, Assistant Professor, Department of Textile Engineering, BGMEA University of Fashion & technology, Dhaka, Bangladesh.

Fahim Hasan, B.Sc. in Textile Engineering, BGMEA University of Fashion & technology, Dhaka, Bangladesh.

References

[1] Fu, Z., Zhang, Y., Wang, X., 2011. Textiles wastewater treatment using anoxic filter bed and biological wriggle bed-ozone biological aerated filter. Bioresour. Technol. 102, 3748e3753.

[2] Hamilton, L.E., Chiweshe, A., 1998. Textile pigment printing binders prepared by modifying wheat gluten with methyl acrylate. Starch/Stärke 50, 213e218.

[3] Hebeish, A., Aly, A.A., El-Shafei, A.M., Zaghloul, S., 2008. Innovative starch derivatives as textile auxiliaries for application in sizing, finishing and flocculation. Starch 60, 97e109.

[4] Moore, S.B., Ausley, L.W., 2004. Systems thinking and green chemistry in the textile industry: concepts,

technologies and benefits. J. Cleaner. Prod. 12, 585e601.

[5] Du, G., Liu, L., Song, Z., Hua, Z., Zhu, Y., Chen, J., 2007. Production of polyvinyl alcohol-degrading enzyme with Janthino-bacterium sp. and its application in cotton fabric desizing. Biotechnol. J. 2, 752e758.

[6] Cacho JW (1980) CMC warp sizing vs. polyvinyl alcohol. Text Chem Color 12(4):28-32

[7] Cai Z, Qiu Y, Zhang C, Hwang Y, Marian M (2003) Effect of atmospheric plasma treatment of desizing of PVA on cotton. Text Res J73(8):670–675

[8] Reddy, N., Zhang, Y., Yang, Y., 2013. Corn distillers dried grains as sustainable and environmentally friendly warp sizing agents. ACS Sustainable Chem. Eng..<u>http://dx.doi.org/10.1021/sc4002017</u>.

[9] Ren, X., 2000. Development of environmental performance indicators for textile process and product. J. Cleaner Prod. 8, 473e481.

[10] Savin, I., Butnaru, R., 2008. Wastewater characteristics in textile finishing mills.Environ. Eng. Manag. J. 7 (6), 859e864.

[11] Sun W, Tian J, Chen L, He S, Wang J (2012) Improvement of biodegradability

of PVA containing wastewater by ionizing radiation

[12] Sarkar, A., Sarkar, D., Gupta, M., Bhattacharjee, C., 2012. Recovery of polyvinyl alcohol from desizing wastewater using a novel high-shear ultrafiltration module. CLEAN 40 (8), 830e837.

[13] Bisschops I, Spanjers H (2003) Literature review on textile wastewater characterization. Environ Technol 24:1399–1411

[14] Gartiser S, Wallrabenstein M, Stiene G (1998) Assessment of several test methods for the determination of the anaerobic biodegradability of polymers. J Environ Polym Degrad 6:159–173

Appendices

		Size Chemical Costing Consumption								
Month	Sl No	Chemical Name	Origin	Price \$/KG	Monthly Used Qnty (KG)	Cost/Month TK	Elite%			
	1	Bk-2000	Thailand	0.78	9700	605280				
	2	E-5	Germany	0.71	1350	76680				
	3	B-120	Thailand	0.68	2700	146880]			
	4	CMS-60	Germany	1.95	4950	772200				
	5	T-20	Thailand	0.788	12500	788000]			
Jan 2017	6	EH Size	Thailand	0.63	0	0	93.43			
	7	Sizing Master	France	4.8	200	76800]			
		 Sizing Master 	China	6.5	800	416000]			
	8	Tamsize S-250	Indonesia	0.443	4375	155050				
	9	Wax(B60)	Thailand	1.8	1875	270000]			
	TOTAL					3306890				
	1	Bk-2000	Thailand	0.78	12450	776880	-			
	2	E-5	Germany	0.71	2750	156200				
	3	B-120	Thailand	0.68	7200	391680				
	4	CMS-60	Germany	1.95	5125	799500				
	5	T-20	Thailand	0.788	8250	520080				
Feb 2017	6	EH Size	Thailand	0.63		0	93.92			
	7	Sizing Master	France	4.8	2275	873600]			
	8	Tamsize S-250	Indonesia	0.443	375	13290]			
	9	Wax(B60)	Thailand	1.8	1950	280800				
	TOTAL					3812030				
	1	Bk-2000	Thailand	0.78	12950	808080				
	2	E-5	Germany	0.71		0	1			
Mar 2017	3	B-120	Thailand	0.68	19950	1085280	04.70			
	4	CMS-60	Germany	1.95		0	94.78			
	5	T-20	Thailand	0.788	3000	189120				
	6	EH Size	Thailand	0.63		0]			
	7	Sizing Master	France	4.8	2525	969600]			

	8	Tamsize S-250	Indonesia	0.443	2250	79740	
	9	Wax(B60)	Thailand	1.8	1900	273600	-
	TOTAL					3405420	
	1	Bk-2000	Thailand	0.78	4250	265200	
	2	E-5	Germany	0.71	0	0	
	2	B-120	Thailand	0.68	8825	480080	
	3	CMS-60	Germany	1.95	3200	499200	
	4	T-20	Thailand	0.788	17300	1090592	
Apr 2017	6	EH Size	Thailand	0.63		0	95.21
	6	Sizing Master	France	4.8	0	0	
	7	Tamsize S-250	Indonesia	0.443	4375	155050	
	8	Wax(B60)	Thailand	1.8	1700	244800	1
	TOTAL					2734922	
	1	Bk-2000	Thailand	0.78	2200	137280	
	_2	E-5	Germany	0.71	0	0	
	2	B-120	Thailand	0.68	5200	282880	1
	3	CMS-60	Germany	1.95	3300	514800	
	4	T-20	Thailand	0.788	12700	800608	
May 2017	6	EH Size	Thailand	0.63	0	0	95.43
	6	Sizing Master	France	4.8	0	0	
	7	Tamsize S-250	Indonesia	0.443	3625	128470	1
	8	Wax(B60)	Thailand	1.8	1175	169200	
	TOTAL	TOTAL				2033238	
	1	Bk-2000	Thailand	0.78	2050	127920	
	2	E-5	Germany	0.71	0	0	
	2	B-120	Thailand	0.68	10200	554880	
	3	CMS-60	Germany	1.95	1850	288600	
	4	T-20	Thailand	0.788	0	0	1
Jun 2017	6	EH Size	Thailand	0.63	0	0	97.25
	6	Sizing Master	France	4.8	600	230400	1
	7	Tamsize S-250	Indonesia	0.443	1500	53160	
	8	Wax	Thailand	1.8	825	118800	
	TOTAL					1373760	

	1	Bk-2000	Thailand	0.78	2100	131040	
	2	E-5	Germany	0.71	0	0	
	2	B-120	Thailand	0.68	17975	977840	
	3	CMS-60	Germany	1.95	3100	483600	
	4	T-20	Thailand	0.788	0	0	
Jul 2017	6	EH Size	Thailand	0.63	0	0	96.94
	6	Sizing Master	France	4.8	1675	643200	
	7	Tamsize S-250	Indonesia	0.443	375	13290	
	8	Wax	Thailand	1.8	1250	180000	
	9	E-850		3.5	255	71400	
	TOTAL					2500370	
	1	Bk-2000	Thailand	0.78	3750	234000	
	2	E-5	Germany	0.71	0	0	
	2	B-120	Thailand	0.68	16975	923440	
	3	CMS-60	Germany	1.95	3550	553800	
	4	T-20	Thailand	0.788	0	0	
Aug 2017	6	EH Size	Thailand	0.63	8150	410760	96.57
	6	Sizing Master	France	4.8	2200	844800	
	7	Tamsize S-250	Indonesia	0.443	125	4430	
	8	Wax	Thailand	1.8	2000	288000	
	TOTAL					3259230	
	1	Bk-2000	Thailand	0.78	5100	318240	
	2	E-5	Germany	0.71	0	0	
	2	B-120	Thailand	0.68	4625	251600	
	3	CMS-60	Germany	1.95	0	0	
	4	T-20	Thailand	0.788	6650	419216	
Sep 2017	6	EH Size	Thailand	0.63	9025	454860	96.83
	6	Sizing Master	France	4.8	1100	422400	
	7	Tamsize S-250	Indonesia	0.443	750	26580	
	8	Wax	Thailand	1.8	1350	194400	
	TOTAL					2087296	
	1	Bk-2000	Thailand	0.78	6400	399360	
Oct 2017	2	E-5	Germany	0.71	0	0	96.11
	2	B-120	Thailand	0.68	17550	954720	

o	2	8
-		

	3	CMS-60	Germany	1.95	0	0	
	4	T-20	Thailand	0.788	9325	587848	
	6	EH Size	Thailand	0.63	325	16380	
	6	Sizing Master	France	4.8	1725	662400	
	7	Tamsize S-250	Indonesia	0.443	625	22150	
	8	Wax	Thailand	1.8	2200	316800	
	TOTAL	·				2959658	
	1	Bk-2000	Thailand	0.78	14150	882960	
	2	E-5	Germany	0.71	0	0	
	2	B-120	Thailand	0.68	22750	1237600	
	3	CMS-60	Germany	1.95	0	0	
	4	T-20	Thailand	0.788	1125	70920	
	6	EH Size	Thailand	0.63	1000	50400	
Nov 2017	6	Sizing Master	France	4.8	2200	844800	94.94
	7	Tamsize S-250	Indonesia	0.443	2500	88600	
	8	Wax	Thailand	1.8	3275	471600	
	9	BK-1500	Thailand	0.77	2000	123200	
	10					0	
	11					0	
	TOTAL					3770080	
	1	Bk-2000	Thailand	0.78	0	0	
	2	E-5	Germany	0.71	0	0	
	2	B-120	Thailand	0.68	18600	1011840	
	3	CMS-60	Germany	1.95	0	0	
	4	T-20	Thailand	0.788	0	0	
	6	EH Size	Thailand	0.63	12350	622440	
Dec 2017	6	Sizing Master	France	4.8	1575	604800	95.22
	7	Tamsize S-250	Indonesia	0.443	250	8860	
	8	Wax	Thailand	1.8	2550	367200	
	9	BK-1500	Thailand	0.77	2350	144760	
	10	E-850	Thailand	3.5	140	39200	
	11					0	
	TOTAL					2799100	

IJSER

Page | 11